ρ predict
About
This tool predicts the electronic density of molecules using a symmetry-adapted Gaussian process regression model (SA-GPR). Available trained models:
- SA-GPR model trained on the sidechain-sidechain interaction subset of the biofragment database ( BFDB-SSI (H, C, N, O)[3][8]).
- SA-GPR model trained on the sidechain-sidechain interaction subset of the biofragment database ( BFDB-SSI (H, C, N, O, S)[3][8]).
References
- Briling, K. R.; Fabrizio, A.; Corminboeuf, C. Impact of Quantum-Chemical Metrics on the Machine Learning Prediction of Electron Density. J. Chem. Phys. 2021 , 155, 024107; doi: 10.1063/5.0055393 .
- Fabrizio, A.; Briling, K. R.; Girardier, D. D.; Corminboeuf, C. Learning On-Top: Regressing the On-Top Pair Density for Real-Space Visualization of Electron Correlation. J. Chem. Phys. 2020 , 153, 204111; doi: 10.1063/5.0033326 .
- Fabrizio, A.; Grisafi, A.; Meyer, B.; Ceriotti, M.; Corminboeuf, C. Electron Density Learning of Non-Covalent Systems. Chem. Sci. 2019, 10, 9424; doi: 10.1039/C9SC02696G .
- Grisafi, A.; Fabrizio, A.; Meyer, B.; Wilkins, D. M.; Corminboeuf, C.; Ceriotti, M. Transferable Machine-Learning Model of the Electron Density. ACS Cent. Sci. 2019 , 5, 57; doi: 10.1021/acscentsci.8b00551 .
- Grisafi, A.; Wilkins, D. M.; Csányi, G.; Ceriotti, M. Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems. Phys. Rev. Lett. 2018, 120, 036002; doi: 10.1103/physrevlett.120.036002 .
- Bartók, A. P.; Kondor, R.; Csányi, G. On Representing Chemical Environments. Phys. Rev. B 2013, 87; doi: 10.1103/physrevb.87.184115 .
- Vela, S.; Fabrizio, A.; Briling, K. R.; Corminboeuf, C. Learning the Exciton Properties of Azo-Dyes. J. Phys. Chem. Lett. 2021 , 12, 5957; doi: 10.1021/acs.jpclett.1c01425 .
- Fabrizio, A.; Briling, K.; Grisafi, A.; Corminboeuf, C. Learning (From) the Electron Density: Transferability, Conformational and Chemical Diversity. Chimia 2020, 74, 232; doi: 10.2533/chimia.2020.232 .
Theory
Representations
Examples of applications
Acknowledgements
The authors acknowledge the National Centre of Competence in Research
(NCCR) "Materials' Revolution: Computational Design and Discovery of Novel
Materials (MARVEL)" of the Swiss National Science Foundation (SNSF, grant number
182892) and the European Research Council (ERC, grant agreement no 817977).
Upload your structure
How to cite
Until the preprint is available from arXiv, please cithe this tool as:
K.R. Briling, O. Hernandez-Cuellar, J.W. Abbott, M. Ceriotti, C. Corminboeuf, (2024) "rho predict" https://github.com/lcmd-epfl/rho-prediction